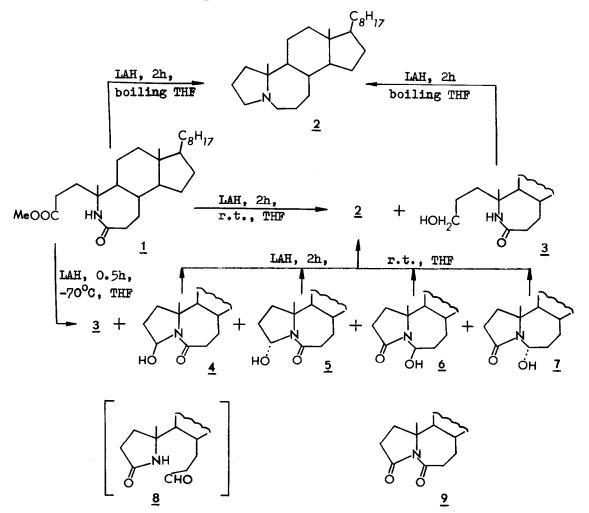
REDUCTIVE N-CYCLIZATION OF LACTAMOESTERS


W. J. Rodewald and J. W. Morzycki Institute of Fundamental Problems of Chemistry University of Warsaw, 02093 Warszawa, Poland

(Received in UK 20 January 1978; accepted for publication 30 January 1978)

During our investigations on 5-azasteroid 1,2 synthesis the problem of lactam carbonyl reduction arose. Our previous experiments indicated that the carbonyl groups of A-seco-lactams are usually resistant towards lithium-aluminium hydride (LAH), whereas imides with the closed ring A are easily reduced to the corresponding amines. On the other hand, it has been established 3 that in a number of cases lactamoesters of type <u>1</u> undergo a reductive N-cyclization to give respective 5-azasteroids 4 .

In the present communication we report the results of our studies on the course of reductive N-cyclization of lactamoester 1 during the LAH reduction. The starting lactamoester <u>1</u> (m.p. 155.5-156.5°C, $[\alpha]_D^{25}$ +53.6°) ⁵⁾, treated with LAH ⁶⁾ in boiling THF, afforded a single product, A-nor-B-homo-5-azacholestane 2 (m.p. 60-61°C, $[\alpha]_{D}^{25}$ -23.0°, lit.⁷ m.p. 60-61°C, $[\alpha]_{D}^{15}$ -23.0°) in 91% yield. However, the same reaction carried at -70°C (dry ice - acetone) yielded a mixture of five compounds (TLC), which were separated by silica-gel column chromatography. The most polar product was a known compound, A-seco-lactamoalcohol $\underline{3}$ (18%, m.p. 153-155°C, $[\alpha]_D^{25}$ +47.6°, lit.⁸⁾m.p. 151°C, $[\alpha]_n^{21}$ +45.2°). Four others were identified as isomeric hydroxylactams 4, 5, 6 and 7. Their structure was established by IR. ¹H-NMR and MS spectra. The position of the lactam carbonyl group in 5- or 7-membered ring followed from its IR-bands. The assignement was corroborated by the electron impact fragmentation of compounds 4, 5, 6 and 7. The configuration of hydroxyl group was deduced from the H-NMR spectra. The relevant spectral data and physical constants have been collected in Table 1.

The anomeric relation of $\underline{6}$ and $\underline{7}$ was confirmed by their equilibration. While heated separately in boiling heptane for 10 minutes, compounds $\underline{6}$ and $\underline{7}$ gave the same mixture of these two epimers in the ratio 45:55. The reaction probably proceeds <u>via</u> an intermediate lactamoaldehyde $\underline{8}$. It has to be noticed that hydroxylactams $\underline{4}$ and $\underline{5}$ did not equilibrate under the foregoing conditions.

Each hydroxylactam (4, 5, 6 and 7), oxidized with RuO_4 , gave the same known compound, imide 2 (m.p. 179°C, $[\alpha]_D^{25}$ +75.8°, lit.⁷⁾m.p. 179-180°C, $[\alpha]_D^{21}$ +90.5°) in 80-90% yield. It can be assumed that imide 2 is formed as an intermediate during the reduction of lactamoester 1. This is suggested by the appearance of compounds with a carbonyl group in ring A and a hydroxyl group in ring B (6 and 7) among the reaction products.

S			m/e 403 M ⁺ (11%) M/ HO HO	m/e 403 M ⁺ (14%) M/ HO HO	m/e 403 M ⁺ (1%) MH MH m/e 98 (100%) (+)	m/e 403 M ⁺ (1%) M/H m/e 98 (100%)
	РМК (б) (сс1 ₄)	-сң-он	5.40 (m,∑=12Hz)	5.56 (m,Ž= 7Hz)	5,48 (m, <u>%</u> =21Hz)	5,25 (m,Ž= 8Hz)
د (۶)		풘	4.90	4.17	4.56	4.28
PMF		19- <u>H</u>	1.42	1.31	1,48	1,28
		18- <u>H</u>	0.72	0.73	0.74	0.71
	IR \$ KBr (cm ⁻¹) max (cm ⁻¹)	c= 0	1613	1628	1683	1695
IR		0-н	3403	3414	3319	3308
[_ຜ] ²⁵ [ແ] ₀ (cc1 ₄)		(cc1 ₄)	+80.1 ⁰ (c 0.44)	+26,6 ⁰ (c 0,47)	+41,8 ⁰ (c 0,47)	+30,4 ⁰ (c 0,52)
			113 ⁰ C (heptane)	121-122 ⁰ C (acetone)	159-160 ⁰ C (ether-hexane)	148.5-150 ⁰ C (ether-hexane)
Yield			ž	30%	27%	ы Ж
Compd No		2	41	പ്ര	ഗ	Ы

No. 12

Е

TABL

All hydroxylactams 4, 5, 6 and 7 which were formed during the reduction of lactamoester 1 at the temperature -70° C underwent at room temperature a further reduction with LAH to A-nor-B-homo-5-azacholestane (2) as the final product in a very good yield. On the other hand, compound 3 was proved to be almost completely resistant towards LAH at room temperature. This explained the result of lactamoester 1 reduction at room temperature, when A-seco-lactamoalcohol 3 was formed in 14% yield in addition to the main product 2 (78%). At the boiling point of THF the reduction of compound 3 to 5-azasteroid 2 took place in high yield. The results of investigations on reduction of compounds obtained during the reaction of 1 with LAH at the temperature -70° C offer a unequivocal explanation of lactamoester 1 reduction at the boiling point of THF.

The process carried out at low temperature makes possible to obtain derivatives functionalized in α -position relative to nitrogen, this being, <u>inter</u> alia, the subject of our further investigations.

References and Notes

- 1. W.J. Rodewald, J.R. Jaszczynski, Tetrahedron Letters, 34, 2977 (1976).
- 2. W.J. Rodewald, B. Achmatowicz, <u>Tetrahedron</u>, <u>27</u>, 5467 (1971).
- 3. T. Wasiak, Ph. D. Thesis, University of Warsaw, 1972.

J.W. Morzycki, Ph. D. Thesis, University of Warsaw, 1976.

- 4. A similar reaction, an intermolecular reductive N-alkylation of lactams with esters has been recently described: J.M. Khanna, V.M. Dixit, Nitya Anand, <u>Synthesis</u>, 607 (1975).
- 5. W.J. Rodewald, J. Frelek, Unpublished results.
- 6. A tenfold excess of LAH was used in all experiments.
- 7. W.J. Rodewald, J. Wicha, Roczniki Chem., 40, 837 (1966).
- 8. W.J. Rodewald, J. Wicha, <u>Roczniki Chem.</u>, <u>40</u>, 1059 (1966).